Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
2.
Nano Res ; : 1-8, 2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-20239241

ABSTRACT

The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has necessitated rapid, easy-to-use, and accurate diagnostic methods to monitor the virus infection. Herein, a ratiometric fluorescence enzyme-linked immunosorbent assay (ELISA) was developed using Si-fluorescein isothiocyanate nanoparticles (FITC NPs) for detecting SARS-CoV-2 nucleocapsid (N) protein. Si-FITC NPs were prepared by a one-pot hydrothermal method using 3-aminopropyl triethoxysilane (APTES)-FITC as the Si source. This method did not need post-modification and avoided the reduction in quantum yield and stability. The p-nitrophenyl (pNP) produced by the alkaline phosphatase (ALP)-mediated hydrolysis of p-nitrophenyl phosphate (pNPP) could quench Si fluorescence in Si-FITC NPs via the inner filter effect. In ELISA, an immunocomplex was formed by the recognition of capture antibody/N protein/reporter antibody. ALP-linked secondary antibody bound to the reporter antibody and induced pNPP hydrolysis to specifically quench Si fluorescence in Si-FITC NPs. The change in fluorescence intensity ratio could be used for detecting N protein, with a wide linearity range (0.01-10.0 and 50-300 ng/mL) and low detection limit (0.002 ng/mL). The concentration of spiked SARS-CoV-2 N protein could be determined accurately in human serum. Moreover, this proposed method can accurately distinguish coronavirus disease 2019 (COVID-19) and non-COVID-19 patient samples. Therefore, this simple, sensitive, and accurate method can be applied for the early diagnosis of SARS-CoV-2 virus infection. Electronic Supplementary Material: Supplementary material (characterization of Si-FITC NPs (FTIR spectrum, XRD spectra, and synchronous fluorescence spectra); condition optimization of ALP response (fluorescence intensity ratio change); mechanism investigation of ALP response (fluorescence lifetime decay curves and UV-vis absorption spectra); detection of N protein using commercial ELISA Kit; analytical performance of assays for ALP detection or SARS-CoV-2 N protein detection; and determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-4740-5.

3.
Natl Sci Rev ; 10(6): nwad089, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2317893

ABSTRACT

Wastewater-based epidemiology (WBE) has exhibited great utility in the early and rapid identification of SARS-CoV-2. However, the efficacy of wastewater surveillance under China's previous strict epidemic prevention policy remains to be described. We collected the WBE data of wastewater treatment plants (WWTPs) in the Third People's Hospital of Shenzhen and several communities to determine the significant effectiveness of routine wastewater surveillance in monitoring the local spread of SARS-CoV-2 under tight containment of the epidemic. The results of 1 month of continuous wastewater surveillance showed that positive signals for SARS-CoV-2 RNA were detected in the wastewater samples, and a significant positive correlation was observed between the virus concentration and the number of daily cases. In addition, the community's domestic wastewater surveillance results were confirmed even 3 days before, or simultaneously with, the infected patient being confirmed as having the virus. Meanwhile, an automated sewage virus detection robot, ShenNong No.1 robot, was developed, showing a high degree of agreement with experimental data, offering the possibility of large-scale multi-point surveillance. Overall, our results illustrated the clear indicative role of wastewater surveillance in combating COVID-19 and provided a practical basis for rapidly expanding the feasibility and value of routine wastewater surveillance for future emerging infectious diseases.

4.
Biosci Trends ; 17(2): 85-116, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2250322

ABSTRACT

Over three years have passed since the COVID-19 pandemic started. The dangerousness and impact of COVID-19 should definitely not be ignored or underestimated. Other than the symptoms of acute infection, the long-term symptoms associated with SARS-CoV-2 infection, which are referred to here as "sequelae of long COVID (LC)", are also a conspicuous global public health concern. Although such sequelae were well-documented, the understanding of and insights regarding LC-related sequelae remain inadequate due to the limitations of previous studies (the follow-up, methodological flaws, heterogeneity among studies, etc.). Notably, robust evidence regarding diagnosis and treatment of certain LC sequelae remain insufficient and has been a stumbling block to better management of these patients. This awkward situation motivated us to conduct this review. Here, we comprehensively reviewed the updated information, particularly focusing on clinical issues. We attempt to provide the latest information regarding LC-related sequelae by systematically reviewing the involvement of main organ systems. We also propose paths for future exploration based on available knowledge and the authors' clinical experience. We believe that these take-home messages will be helpful to gain insights into LC and ultimately benefit clinical practice in treating LC-related sequelae.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Pandemics , Public Health
5.
Nano Res ; : 1-7, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2270751

ABSTRACT

Coronavirus disease 2019 (COVID-19) highlights the importance of rapid and reliable diagnostic assays for the management of virus transmission. Here, we developed a one-pot hydrothermal method to prepare Si-FITC nanoparticles (NPs) for the fluorescent immunoassay of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N protein). The synthesis of Si-FITC NPs did not need post-modification, which addressed the issue of quantum yield reduction during the coupling reaction. Si-FITC NPs showed two distinct peaks, Si fluorescence at λ em = 385 nm and FITC fluorescence at λ em = 490 nm. In the presence of KMnO4, Si fluorescence was decreased and FITC fluorescence was enhanced. Briefly, in the presence of N protein, catalase (CAT)-linked secondary antibody/reporter antibody/N protein/capture antibody immunocomplexes were formed on microplates. Subsequently, hydrogen peroxide (H2O2) and Si-FITC NPs/KMnO4 were injected into the microplate together. The decomposition of H2O2 by CAT resulted in remaining of KMnO4, which changed the fluorescence intensity ratio of Si-FITC NPs. The fluorescence intensity ratio correlated significantly with the N protein concentration ranging from 0.02 to 50.00 ng/mL, and the detection limit was 0.003 ng/mL, which was more sensitive than the commercial ELISA kit with a detection limit of 0.057 ng/mL. The N protein concentration can be accurately determined in human serum. Furthermore, the COVID-19 and non-COVID-19 patients were distinguishable by this method. Therefore, the ratiometric fluorescent immunoassay can be used for SARS-CoV-2 infection diagnosis with a high sensitivity and selectivity. Electronic Supplementary Material: Supplementary material (characterization of Si-FITC NPs (FTIR, HRXPS); stability investigation of Si-FITC NPs (photostability, pH stability, anti-interference ability); stability investigation of free FITC (pH value, KMnO4); quenching mechanism of KMnO4 (UV-vis absorption spectra, fluorescence lifetime decay curves); reaction condition optimization of biotin-CAT with H2O2 (pH value, temperature, time); detection of N protein using commercial ELISA Kit; selectivity investigation of assays for SARS-CoV-2 N protein detection; determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-5005-z.

6.
Signal Transduct Target Ther ; 8(1): 42, 2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2230292

ABSTRACT

The Omicron variants of SARS-CoV-2, primarily authenticated in November 2021 in South Africa, has initiated the 5th wave of global pandemics. Here, we systemically examined immunological and metabolic characteristics of Omicron variants infection. We found Omicron resisted to neutralizing antibody targeting receptor binding domain (RBD) of wildtype SARS-CoV-2. Omicron could hardly be neutralized by sera of Corona Virus Disease 2019 (COVID-19) convalescents infected with the Delta variant. Through mass spectrometry on MHC-bound peptidomes, we found that the spike protein of the Omicron variants could generate additional CD8 + T cell epitopes, compared with Delta. These epitopes could induce robust CD8 + T cell responses. Moreover, we found booster vaccination increased the cross-memory CD8 + T cell responses against Omicron. Metabolic regulome analysis of Omicron-specific T cell showed a metabolic profile that promoted the response of memory T cells. Consistently, a greater fraction of memory CD8 + T cells existed in Omicron stimulated peripheral blood mononuclear cells (PBMCs). In addition, CD147 was also a receptor for the Omicron variants, and CD147 antibody inhibited infection of Omicron. CD147-mediated Omicron infection in a human CD147 transgenic mouse model induced exudative alveolar pneumonia. Taken together, our data suggested that vaccination booster and receptor blocking antibody are two effective strategies against Omicron.


Subject(s)
COVID-19 , Humans , Animals , Mice , COVID-19/genetics , Leukocytes, Mononuclear , SARS-CoV-2 , Antibodies, Neutralizing , Epitopes , Mice, Transgenic
7.
Eur J Med Res ; 27(1): 291, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2162426

ABSTRACT

OBJECTIVES: The emergence of new variants of SARS-CoV-2 is continuously posing pressure to the epidemic prevention and control in China. The Omicron variant of SARS-CoV-2 having stronger infectivity, immune escape ability, and capability causing repetitive infection spread to many countries and regions all over the world including South Africa, United States and United Kingdom etc., in a short time. The outbreaks of Omicron variant also occurred in China. The aim of this study is to understand the epidemiological characteristics of Omicron variant infection in Shenzhen and to provide scientific basis for effective disease control and prevention. METHODS: The clinical data of 394 imported COVID-19 cases infected with Omicron variant from 16 December 2021 to 24 March 2022 admitted to the Third People's hospital of Shenzhen were collected and analyzed retrospectively. Nucleic acid of SARS-CoV-2 of nasopharyngeal swabs and blood samples was detected using 2019-nCoV nucleic acid detection kit. Differences in Ct values of N gene were compared between mild group and moderate group. The specific IgG antibody was detected using 2019-nCoV IgG antibody detection kit. Statistical analysis was done using SPSS software and graphpad prism. RESULTS: Patients were categorized into mild group and moderate group according to disease severity. The data on the general conditions, underlying diseases, COVID-19 vaccination and IgG antibody, viral load, laboratory examination results, and duration of hospitalization, etc., were compared among disease groups. Mild gorup had higher IgG level and shorter nucleic acid conversion time. Patients with underlying diseases have 4.6 times higher probability to progress to moderate infection. CONCLUSION: In terms of epidemic prevention, immunization coverage should be strengthened in the population with underlying diseases. In medical institutions, more attention needs to be paid to such vulnerable population and prevent further deterioration of the disease.

8.
Nano research ; : 1-7, 2022.
Article in English | EuropePMC | ID: covidwho-2046111

ABSTRACT

Coronavirus disease 2019 (COVID-19) highlights the importance of rapid and reliable diagnostic assays for the management of virus transmission. Here, we developed a one-pot hydrothermal method to prepare Si-FITC nanoparticles (NPs) for the fluorescent immunoassay of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N protein). The synthesis of Si-FITC NPs did not need post-modification, which addressed the issue of quantum yield reduction during the coupling reaction. Si-FITC NPs showed two distinct peaks, Si fluorescence at λem = 385 nm and FITC fluorescence at λem = 490 nm. In the presence of KMnO4, Si fluorescence was decreased and FITC fluorescence was enhanced. Briefly, in the presence of N protein, catalase (CAT)-linked secondary antibody/reporter antibody/N protein/capture antibody immunocomplexes were formed on microplates. Subsequently, hydrogen peroxide (H2O2) and Si-FITC NPs/KMnO4 were injected into the microplate together. The decomposition of H2O2 by CAT resulted in remaining of KMnO4, which changed the fluorescence intensity ratio of Si-FITC NPs. The fluorescence intensity ratio correlated significantly with the N protein concentration ranging from 0.02 to 50.00 ng/mL, and the detection limit was 0.003 ng/mL, which was more sensitive than the commercial ELISA kit with a detection limit of 0.057 ng/mL. The N protein concentration can be accurately determined in human serum. Furthermore, the COVID-19 and non-COVID-19 patients were distinguishable by this method. Therefore, the ratiometric fluorescent immunoassay can be used for SARS-CoV-2 infection diagnosis with a high sensitivity and selectivity. Electronic Supplementary Material Supplementary material (characterization of Si-FITC NPs (FTIR, HRXPS);stability investigation of Si-FITC NPs (photostability, pH stability, anti-interference ability);stability investigation of free FITC (pH value, KMnO4);quenching mechanism of KMnO4 (UV-vis absorption spectra, fluorescence lifetime decay curves);reaction condition optimization of biotin-CAT with H2O2 (pH value, temperature, time);detection of N protein using commercial ELISA Kit;selectivity investigation of assays for SARS-CoV-2 N protein detection;determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-5005-z.

9.
Front Microbiol ; 13: 953328, 2022.
Article in English | MEDLINE | ID: covidwho-2043499

ABSTRACT

Although the FDA has given emergency use authorization (EUA) for some antiviral drugs for the treatment of COVID-19, no direct antiviral drugs have been identified for the treatment of critically ill patients, the most important treatment is suppression of the hyperinflammation. The purpose of this study was to evaluate the role of corticosteroids in hospitalized severe or critical patients positive for COVID-19. This is a retrospective single-center descriptive study. Patients classified as having severe or critical COVID-19 infections with acute respiratory dysfunction syndrome in Shenzhen Third People's Hospital were enrolled from January 11th to March 30th, 2020. Ninety patients were classified as having severe or critical COVID-19 infections. The patients were treated with methylprednisolone with a low-to-moderate dosage and short duration. The days from the symptom onset to methylprednisolone were about 8 days. Eighteen patients were treated with invasive ventilation and intensive care unit (ICU) care. All the patients in the severe group and ten in the critical group recovered and were discharged. Three critical cases with invasive ventilation died. Although cases were much more severe in the corticosteroid-treated group, the mortality was not significantly increased. Early use of low-to-moderate dosage and short duration of corticosteroid may be the more accurate immune-modulatory treatment and brings more benefits to severe patients with COVID-19.

11.
Nano research ; : 1-8, 2022.
Article in English | EuropePMC | ID: covidwho-1989784

ABSTRACT

The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has necessitated rapid, easy-to-use, and accurate diagnostic methods to monitor the virus infection. Herein, a ratiometric fluorescence enzyme-linked immunosorbent assay (ELISA) was developed using Si-fluorescein isothiocyanate nanoparticles (FITC NPs) for detecting SARS-CoV-2 nucleocapsid (N) protein. Si-FITC NPs were prepared by a one-pot hydrothermal method using 3-aminopropyl triethoxysilane (APTES)-FITC as the Si source. This method did not need post-modification and avoided the reduction in quantum yield and stability. The p-nitrophenyl (pNP) produced by the alkaline phosphatase (ALP)-mediated hydrolysis of p-nitrophenyl phosphate (pNPP) could quench Si fluorescence in Si-FITC NPs via the inner filter effect. In ELISA, an immunocomplex was formed by the recognition of capture antibody/N protein/reporter antibody. ALP-linked secondary antibody bound to the reporter antibody and induced pNPP hydrolysis to specifically quench Si fluorescence in Si-FITC NPs. The change in fluorescence intensity ratio could be used for detecting N protein, with a wide linearity range (0.01–10.0 and 50–300 ng/mL) and low detection limit (0.002 ng/mL). The concentration of spiked SARS-CoV-2 N protein could be determined accurately in human serum. Moreover, this proposed method can accurately distinguish coronavirus disease 2019 (COVID-19) and non-COVID-19 patient samples. Therefore, this simple, sensitive, and accurate method can be applied for the early diagnosis of SARS-CoV-2 virus infection. Electronic Supplementary Material Supplementary material (characterization of Si-FITC NPs (FTIR spectrum, XRD spectra, and synchronous fluorescence spectra);condition optimization of ALP response (fluorescence intensity ratio change);mechanism investigation of ALP response (fluorescence lifetime decay curves and UV—vis absorption spectra);detection of N protein using commercial ELISA Kit;analytical performance of assays for ALP detection or SARS-CoV-2 N protein detection;and determination results of SARS-CoV-2 N protein in human serum) is available in the online version of this article at 10.1007/s12274-022-4740-5.

12.
Front Nutr ; 9: 960859, 2022.
Article in English | MEDLINE | ID: covidwho-1987531

ABSTRACT

Objective: To investigate the picture between vitamin D levels and clinical outcomes of SARS-CoV-2 Omicron subvariant BA.2 in children. Methods: A retrospective, longitudinal cohort study was performed. All included hospitalized cases were divided into the sufficient (sVD) and insufficient vitamin D (iVD) groups according to whether their serum 25-hydroxyvitamin D [25(OH)D] concentration was ≥30 ng/mL. Dynamic changes in clinical parameters were observed for seven time periods within 28 days after admission. Results: Serum 25(OH)D concentrations were significantly negatively correlated with age in the included cases (r = -0.6; P < 0.001). Compared with the iVD group (n = 80), the sVD group (n = 36) had higher interleukin-6 (18.4 vs. 12.9; P = 0.003) within the first day; higher procalcitonin within the first (0.15 vs. 0.1; P = 0.03), 2-3 (0.14 vs. 0.07; P = 0.03), 4-5 (0.21 vs. 0.07; P = 0.02) days; more lymphocytes within the first (1.6 vs. 1.2; P = 0.02), 2-3 (3.7 vs. 2; P = 0.001), 4-5 (3.9 vs. 2.1; P = 0.01) and 6-7 (4.9 vs. 2.7; P = 0.02) days; notably, higher cycle threshold for N gene (30.6 vs 19.8; P = 0.03) or ORF1ab gene (31.4 vs 20.1; P = 0.03) within 2 to 3 days. Pneumonia lesions were found in eleven and six cases in the iVD and sVD groups, respectively, without significant difference on computed tomography at admission. Six out of eleven and five out of six had a repeat computed tomography after 1-2 weeks. Lesion improvement was more significant in the sVD group (P = 0.04). Conclusions: Children with vitamin D insufficiency might have poorer clinical outcomes in Omicron subvariant BA.2 infection, especially in older pediatric patients. Further studies are needed to assess effectiveness of supplements in reducing the same.

13.
Frontiers in microbiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1971020

ABSTRACT

Although the FDA has given emergency use authorization (EUA) for some antiviral drugs for the treatment of COVID-19, no direct antiviral drugs have been identified for the treatment of critically ill patients, the most important treatment is suppression of the hyperinflammation. The purpose of this study was to evaluate the role of corticosteroids in hospitalized severe or critical patients positive for COVID-19. This is a retrospective single-center descriptive study. Patients classified as having severe or critical COVID-19 infections with acute respiratory dysfunction syndrome in Shenzhen Third People’s Hospital were enrolled from January 11th to March 30th, 2020. Ninety patients were classified as having severe or critical COVID-19 infections. The patients were treated with methylprednisolone with a low-to-moderate dosage and short duration. The days from the symptom onset to methylprednisolone were about 8 days. Eighteen patients were treated with invasive ventilation and intensive care unit (ICU) care. All the patients in the severe group and ten in the critical group recovered and were discharged. Three critical cases with invasive ventilation died. Although cases were much more severe in the corticosteroid-treated group, the mortality was not significantly increased. Early use of low-to-moderate dosage and short duration of corticosteroid may be the more accurate immune-modulatory treatment and brings more benefits to severe patients with COVID-19.

14.
Front Public Health ; 10: 881412, 2022.
Article in English | MEDLINE | ID: covidwho-1952830

ABSTRACT

Backgrounds: Hepcidin has been identified as a systemic iron-regulatory hormone. Recent studies have suggested that iron metabolism disorders may be involved in the pathogenesis of acute respiratory distress syndrome and multiple organ dysfunction in coronavirus disease 2019 (COVID-19). Objectives: To re-evaluate the hepcidin-related iron metabolism parameters and explore the relationship between hepcidin-mediated iron dysmetabolism and COVID-19 severity. Methods: COVID-19 is classified as mild and moderate as non-severe, severe and critical as severe. A meta-analysis was conducted. Four bibliographic databases were comprehensively searched up to December 31st 2021. Results: Six unique studies with data from 477 COVID-19 patients were included. Compared to non-severe cases, severe cases had higher hepcidin (standardized mean difference (SMD), -0.39; 95% Confidence Interval (CI) [-0.76, -0.03]; P = 0.03) and ferritin (SMD, -0.84; 95% CI [-1.30, -0.38]; P = 0.0004). In five out of six studies, a total of 427 patients were tested for serum iron, and there were significant differences in their levels between severe and non-severe cases (SMD, 0.22; 95% CI [0.02, 0.41]; P = 0.03). A total of 320 patients from four out of six studies were tested for transferrin saturation, and the statistical difference was not significant (SMD, 0.06; 95% CI [-0.17, 0.28]; P = 0.64). Conclusion: Severe COVID-19 cases had higher serum levels of hepcidin and ferritin, and lower serum iron, without significant differences in transferrin saturation. Further studies are needed to verify whether targeting the hepcidin-mediated iron metabolism axis may influence the outcome and treatment of COVID-19.


Subject(s)
COVID-19 , Hepcidins , Ferritins , Hepcidins/metabolism , Humans , Iron , Transferrin/analysis , Transferrin/metabolism
15.
Front Pharmacol ; 13: 939573, 2022.
Article in English | MEDLINE | ID: covidwho-1928445

ABSTRACT

Background: The rapid worldwide spread of the Omicron variant of SARS-CoV-2 has unleashed a new wave of COVID-19 outbreaks. The efficacy of molnupiravir, an approved drug, is still unknown in patients infected with the Omicron variant. Objective: Evaluated the antiviral efficacy and safety of molnupiravir in patients infected with SARS-CoV-2 Omicron variant, with symptom duration within 5 days. Methods: We conducted a randomized, controlled trial involving patients with mild or moderate COVID-19. Patients were randomized to orally receive molnupiravir (800 mg) plus basic treatment or only basic treatment for 5 days (BID). The antiviral efficacy of the drug was evaluated using reverse transcriptase polymerase chain reaction. Results: Results showed that the time of viral RNA clearance (primary endpoint) was significantly decreased in the molnupiravir group (median, 9 days) compared to the control group (median, 10 days) (Log-Rank p = 0.0092). Of patients receiving molnupiravir, 18.42% achieved viral RNA clearance on day 5 of treatment, compared to the control group (0%) (p = 0.0092). On day 7, 40.79%, and 6.45% of patients in the molnupiravir and control groups, respectively, achieved viral RNA clearance (p = 0.0004). In addition, molnupiravir has a good safety profile, and no serious adverse events were reported. Conclusion: Molnupiravir significantly accelerated the SARS-CoV-2 Omicron RNA clearance in patients with COVID-19. Clinical Trial Registration: [chictr.org.cn], identifier [ChiCTR2200056817].

17.
Cell Biosci ; 12(1): 14, 2022 Feb 09.
Article in English | MEDLINE | ID: covidwho-1702143

ABSTRACT

BACKGROUND: COVID-19 pneumonia has caused huge impact on the health of infected patients and associated with high morbidity and mortality. Shift in the lung microbial ecology upon such viral infection often worsens the disease and increases host susceptibility to superinfections. Bacterial superinfection contributes to the aggravation of COVID-19 and poses a great challenge to clinical treatments. An in-depth investigation on superinfecting bacteria in COVID-19 patients might facilitate understanding of lung microenvironment post virus infections and superinfection mechanism. RESULTS: We analyzed the adaptation of two pairs of P. aeruginosa strains with the same MLST type isolated from two critical COVID-19 patients by combining sequencing analysis and phenotypic assays. Both P. aeruginosa strains were found to turn on alginate biosynthesis and attenuate type VI secretion system (T6SS) during short-term colonization in the COVID-19 patients, which results in excessive biofilm formation and virulence reduction-two distinct markers for chronic infections. The macrophage cytotoxicity test and intracellular reactive oxygen species measurement confirmed that the adapted P. aeruginosa strains reduced their virulence towards host cells and are better to escape from host immune clearance than their ancestors. CONCLUSION: Our study suggests that SARS-CoV-2 infection can create a lung environment that allow rapid adaptive evolution of bacterial pathogens with genetic traits suitable for chronic infections.

18.
Nat Microbiol ; 7(3): 423-433, 2022 03.
Article in English | MEDLINE | ID: covidwho-1671570

ABSTRACT

Elucidating the dynamics of the neutralizing antibody (nAb) response in coronavirus disease 2019 (COVID-19) convalescents is crucial in controlling the pandemic and informing vaccination strategies. Here we measured nAb titres across 411 sequential plasma samples collected during 1-480 d after illness onset or laboratory confirmation (d.a.o.) from 214 COVID-19 convalescents, covering the clinical spectrum of disease and without additional exposure history after recovery or vaccination against SARS-CoV-2, using authentic SARS-CoV-2 microneutralization (MN) assays. Forty-eight samples were also tested for neutralizing activities against the circulating variants using pseudotyped neutralization assay. Results showed that anti-RBD IgG and MN titres peaked at ~120 d.a.o. and subsequently declined, with significantly reduced nAb responses found in 91.67% of COVID-19 convalescents (≥50% decrease in current MN titres compared with the paired peak MN titres). Despite this decline, majority of the COVID-19 convalescents maintained detectable anti-RBD IgG and MN titres at 400-480 d.a.o., with undetectable neutralizing activity found in 14.41% (16/111) of the mild and 50% (5/10) of the asymptomatic infections at 330-480 d.a.o. Persistent antibody-dependent immunity could provide protection against circulating variants after one year, despite significantly decreased neutralizing activities against Beta, Delta and Mu variants. In conclusion, these data show that despite a marked decline in neutralizing activity over time, nAb responses persist for up to 480 d in most convalescents of symptomatic COVID-19, whereas a high rate of undetectable nAb responses was found in convalescents from asymptomatic infections.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Asymptomatic Infections/epidemiology , COVID-19/blood , COVID-19/epidemiology , COVID-19/virology , Child , Child, Preschool , Cohort Studies , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Young Adult
20.
Cells ; 11(3)2022 01 30.
Article in English | MEDLINE | ID: covidwho-1667057

ABSTRACT

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, as is research on the molecular mechanisms underlying cellular infection by coronaviruses, with the hope of developing therapeutic agents against this pandemic. Other important respiratory viruses such as 2009 pandemic H1N1 and H7N9 avian influenza virus (AIV), influenza A viruses, are also responsible for a possible outbreak due to their respiratory susceptibility. However, the interaction of these viruses with host cells and the regulation of post-transcriptional genes remains unclear. In this study, we detected and analyzed the comparative transcriptome profiling of SARS-CoV-2, panH1N1 (A/California/07/2009), and H7N9 (A/Shanghai/1/2013) infected cells. The results showed that the commonly upregulated genes among the three groups were mainly involved in autophagy, pertussis, and tuberculosis, which indicated that autophagy plays an important role in viral pathogenicity. There are three groups of commonly downregulated genes involved in metabolic pathways. Notably, unlike panH1N1 and H7N9, SARS-CoV-2 infection can inhibit the m-TOR pathway and activate the p53 signaling pathway, which may be responsible for unique autophagy induction and cell apoptosis. Particularly, upregulated expression of IRF1 was found in SARS-CoV-2, panH1N1, and H7N9 infection. Further analysis showed SARS-CoV-2, panH1N1, and H7N9 infection-induced upregulation of lncRNA-34087.27 could serve as a competitive endogenous RNA to stabilize IRF1 mRNA by competitively binding with miR-302b-3p. This study provides new insights into the molecular mechanisms of influenza A virus and SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Immunity/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , RNA/immunology , Transcriptome/immunology , A549 Cells , Animals , COVID-19/genetics , COVID-19/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza, Human/genetics , Influenza, Human/virology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-1/metabolism , MicroRNAs/genetics , MicroRNAs/immunology , MicroRNAs/metabolism , Pandemics/prevention & control , RNA/genetics , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , RNA-Seq/methods , SARS-CoV-2/physiology , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL